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1 Introduction

This document is a short introduction to the relation between complex numbers and trigonometry,
and shows how to approach trigonometrical problems using complex numbers. This is not com-
pletely complete, maybe I’ll add something else later. The targets of this document are beginner
Olympiad problem solvers who have begun studying complex numbers. It is assumed that the
reader has the basic knowledge of trigonometry (definitions, periods, addition formulas and related
identities).

2 Basic Facts

We define the complex numbers C as

C =
{
a+ bi | (a, b) ∈ R2

}
, i2 = −1.

In a complex number z = a + bi, a is called the real part and written Re z = a, while b is called
the imaginary part and written Im z = b. One good thing about dealing with complex numbers in
equations is that one can equate the real and imaginary parts. For some real parameters A,B,C,D
we have

A+Bi = C +Di ⇔ A = C, B = D.

Another helpful thing is the linearity of the Re or Im

Re
∑

=
∑

Re , Im
∑

=
∑

Im.

3 Euler’s Formula

The following formula was given by Leonhard Euler and is a very useful one relating complex
numbers and trigonometry. For any complex x we have

eix = cosx+ i sinx,

[
e = lim

n→∞

(
1 +

1

n

)n
≈ 2.7183.

]
There are many ways to prove this. One outline is included here: first, rewrite the equation as

cosx+ i sinx

eix
= 1,

consider the function y = e−ix(cosx+ i sinx) and differentiate it to get 0. So the function must be
constant. Substitute x = 0 to get y = 1, hence y = 1 for all x. Note that setting x = π we get a
beautiful identity eiπ + 1 = 0.
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4 De Moivre’s Formula

De Moivre’s Formula helps ease out computations a lot. It states that for any complex x and
integer n

(cosx+ i sinx)n = cosnx+ i sinnx.

The proof is one liner if we apply Euler’s formula twice

(cosx+ i sinx)n =
(
eix
)n

= ei(nx) = cosnx+ i sinnx.

Notice that if z = eix = cosx+ i sinx is a complex number, then Re z = cosx and Im z = sinx.

5 Complex Approaches to Trig Problems!

Example 1. Derive the addition formulas of sine and cosine.

Solution. Just notice that by applications of Euler’s formula

cos(x+ y) + i sin(x+ y) = ei(x+y)

= eix · eiy

= (cosx+ i sinx)(cos y + i sin y)

= (cosx cos y − sinx sin y) + i(sinx cos y + cosx sin y)

Now equating real and imaginary part of both sides, we have

cos(x+ y) = cosx cos y − sinx sin y

sin(x+ y) = sinx cos y + cosx sin y

deriving the formulas. �

Example 2. Prove that
n−1∑
k=0

cos
2kπ

n
= 0 ∀ n ∈ N− {1}.

Solution. Let z = e2πi/n = cos
2π

n
+ i sin

2π

n
. Then zn = e2πi = 1 =⇒ zn − 1 = 0. Since z 6= 1

zn − 1 = (z − 1)

n−1∑
k=0

zk = 0 =⇒
n−1∑
k=0

zk = 0 =⇒ Re

n−1∑
k=0

zk = 0.

Now by application of De Moivre’s theorem

zk =

(
cos

2π

n
+ i sin

2π

n

)k
= cos

2kπ

n
+ i sin

2kπ

n
=⇒ Re zk = cos

2kπ

n
.

Therefore by linearity of Re we finally have

0 = Re
n−1∑
k=0

zk =
n−1∑
k=0

Re zk =
n−1∑
k=0

cos
2kπ

n
. �
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Example 3. Show the following (take it granted that the sum converges absolutely)

∞∑
n=0

cosnθ

2n
=

4− 2 cos θ

5− 4 cos θ
.

Solution. Consider einθ = cosnθ + i sinnθ, so that Re einθ = cosnθ. Hence by linearity of Re

∞∑
n=0

cosnθ

2n
=
∞∑
n=0

Re einθ

2n
= Re

∞∑
n=0

(
eiθ

2

)n
which is an infinite geometric series sum. Evaluating we have

∞∑
n=0

cosnθ

2n
= Re

∞∑
n=0

(
eiθ

2

)n
= Re

1

1− eiθ/2
= Re

2

2− eiθ
.

Finally use the identity Re z = (z + z)/2, replace eiθ using Euler’s formula and simplify to get

∞∑
n=0

cosnθ

2n
= Re

2

2− eiθ
=

1

2

(
2

2− eiθ
+

2

2− e−iθ

)
=

4− 2 cos θ

5− 4 cos θ

as desired. �

6 Problems to Try

Problem 1. (IMO 1963/5) Show that

cos
π

7
− cos

2π

7
+ cos

3π

7
=

1

2
.

Problem 2. (Proofathon) Show that for all odd k ≥ 3

cos
π

k
+ cos

3π

k
+ · · ·+ cos

(k − 2)π

k
=

1

2
.

(Can you see how this is a generalization to Problem 1?)

Problem 3. Show the following (take it granted that the sum is absolutely convergent)

∞∑
n=0

cos2 nθ

2n
=

7− 5 cos 2θ

5− 4 cos 2θ
.

(You may use the result proven in Example 3.)
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