
Hashing

Jubayer Nirjhor

May 2019

1 Introduction

One fine morning, you’re at the school office trying to pay some fees. The accountant is
going through a huge notebook full of student names, trying to match each one with yours.
It’s already been 20 minutes and the morning doesn’t seem fine anymore.

Now imagine the same scenario, but the huge notebook is sorted by a unique identity
number for each student, starting from 1. You tell yours to the accountant, and she’s got
the match in less than a minute.

This simple trick is an example of hashing. Hashing is the process of mapping data
of arbitrary size to data of a fixed, preferably small, size. The map used in this process is
called a hash function. Using a roll number for each student is a typical example of a hash
function. Hash functions are used to compress large data into small ones while trying to
preserve useful properties as much as possible. This allows for fast insertion, deletion, and
look up without the need of any sophisticated data structure or algorithm.

Although the mapped data can be anything, we typically choose the integers because
of the computational simplicity they offer. Different choices of hash functions in different
contexts can be surprisingly powerful. In this article, we’ll look at some of these hash
functions and their applications.

2 Hash Functions

Let’s consider a map f : A→ B. This map transforms some data in set A to some data
in set B. How do we decide if it’s a good (useful) hash function?

• Well first of all, it must be a function: we must have f(x) = f(y) whenever x = y.

• We want the hash values to be sufficiently small. So the set B should have a small
enough size in a practical sense.

• The definition of the function f should be simple enough to quickly compute the values
at different points.

1

• Hash functions are less likely to be bijective because the size of set A is typically way
larger than the size of set B. We utilize the fact that in practice, we’ll encounter a
sufficiently smaller subset of set A. So if our hash function maps the elements of A
uniformly over the set B, we’re less likely to encounter two different elements x, y ∈ A
with f(x) = f(y). In other words, we want our hash function to face less collisions.

Example time! Let us denote the set of all length 3 words made up of lowercase English
characters by S. This set contains exactly 263 elements (why?). Let’s consider some hash
functions f : S→ N.

• f(s) = 0 for any s ∈ S. This is a perfectly valid hash function because, well, it’s a
function. But as you can guess, it’s a useless one. It cannot differentiate between the
words abc and efg since both these words map to the same value 0.

• f(s) = sum of positions of each letter in the word s. We assume the positions of a, b, ...,
z as 1, 2, ..., 26. This is better than the previous one. We have f(abc) = 1 + 2 + 3 = 6
and f(efg) = 5 + 6 + 7 = 18. Great! Different words seem to obtain different values.
But we can quickly spot that this function doesn’t depend on the order of characters
in the word. For example, we have f(abc) = f(bac) = 6. So this is still not good
enough. But this one definitely has less collisions than the previous one (duh).

We’ll look at some good solutions in the next section.

3 String Hashing

So our target is to map a text T of arbitrary finite size assuming a finite alphabet Σ,
to an integer. As we’ve seen earlier, sum of character positions is far from suitable since
they don’t at all encode the ordering of characters involved. A simple solution is, instead of
naively adding the characters, to assign a weight to each character based on its position. A
safe choice is choosing a fixed integer b and assigning the weight bi at position i. So the string
T = T0T1T2 · · ·Tn−1 (each Ti is the position of the i-th character in T) would get mapped to

f(T) = T0 + T1b + T2b
2 + · · ·+ Tn−1b

n−1 =
n−1∑
k=0

Tkb
k

Yes, we’re simply evaluating the polynomial with the text characters as coefficients at
the point x = b. If we take b > |Σ|, then this value essentially gives us the unique decimal
value of base b representation of the text.

All quite good so far. But the catch is that the value of f can get quite large as the
text size increases. This property is against that of a good hash function: we want our
mapped values to stay sufficiently small. Easy fix: take the resulting value modulo some
small number m, so the mapped values always stay in range [0,m).

But how to ensure less collisions? We want the mapped values to be uniformly dis-
tributed over [0,m). But notice that for a fixed integer t

2

{kt mod m : k ∈ Z} =

{
k gcd(t,m) : 0 ≤ k <

m

gcd(t,m)

}
This just means that the multiples of a fixed number t modulo m only covers the multi-

ples of gcd(t,m) that are less than m (why?). So to ensure less collisions, we should ensure
gcd(t,m) = 1 for maximum number of integers t. Which numbers m have this property?
The primes! So we should take a large enough prime number as m.

With this base and modulus pair (b,m) we have a sufficiently good hash function for any
text T , known as a polynomial rolling hash function. For example, if the texts are generated
from lowercase English letters only (so |Σ| = 26), we might take b = 29 and m = 109 + 7 (a
prime), and have a good enough hash function that can be computed in linear time.

Data: A text T , a base b, a modulus m
Result: An integer, the hash value
hash← 0
power ← 1
for i← 0 to |T | − 1 do

hash← (hash + power × Ti) mod m
power ← (power × b) mod m

end
return hash

Algorithm 1: Rolling Hash

Notice that the structure of this hash function allows us to quickly compute the hash
of any substring of the given text T . Indeed, let us compute the prefix hash values hash0,
hash1, ..., hash|T | where hash0 = 0 and for any i > 0

hashi = T0 + T1b + · · ·+ Ti−1b
i−1 = hashi−1 + Ti−1b

i−1

which can be computed in a linear pass of the text T (because of the recursive definition).
Now consider integers 0 ≤ l ≤ r < |T | and we want to compute the value hash(l, r) of the
substring consisting of the range [l, r] in text T . Then

hash(l, r) = Tl + Tl+1b + · · ·+ Trb
r−l

= b−l
(
Tlb

l + Tl+1b
l+1 + · · ·+ Trb

r
)

= b−l
[
(T0 + T1b + · · ·+ Trb

r)−
(
T0 + T1b + · · ·+ Tl−1b

l−1)]
= b−l [hashr+1 − hashl]

If we precompute the powers of b−1 (the modular inverse of b) and the values hashi,
then we can compute any substring hash in O(1) time.

Enough chitchat. Let’s get down to some applications!

3

• Given a text T and a pattern P , find all positions where this pattern appears in the
text. For example: the pattern P = aba occurs 3 times in the text T = ababacabad.
Naively matching character by character starting from each position in T is very slow
since the time complexity is O (|T ||P |). However, using the hashi values as discussed
above, we can simply obtain the hash of the substring starting at each position in T
and match it with the hash of P which results in an O (|T |+ |P |) algorithm. This
simple algorithm is known as the Rabin-Karp algorithm.

• Given a text T and q queries asking whether the substring T [l...r] is a palindrome,
answer them. A string is a palindrome if and only if the reversed string matches the
original one. So we keep the hashi values for both the text T and the reverse of the
text T . This way we can quickly compute both the hashes of substring T [l...r] and the
reverse of T [l...r] and compare them. This results in an O (|T |+ q) algorithm which is
far better than the naive O (|T |q) algorithm.

Here’s a sample C++ code that solves the pattern matching problem.

#include <bits/stdc++.h>

using namespace std;

const int B = 29;

const int N = 100010;

const int MOD = 1e9 + 7;

int bigMod (int a, int e) {

if (e == -1) e = MOD - 2;

int ret = 1;

while (e) {

if (e & 1) ret = ret * 1LL * a % MOD;

a = a * 1LL * a % MOD, e >>= 1;

}

return ret;

}

char t[N], p[N];

int _hash[N], inv[N];

inline int range (int l, int r) {

int ret = (_hash[r + 1] - _hash[l]) * 1LL * inv[l] % MOD;

if (ret < 0) ret += MOD;

return ret;

}

int main() {

inv[0] = 1, inv[1] = bigMod(B, -1);

for (int i = 2; i < N; ++i) {

4

inv[i] = inv[i - 1] * 1LL * inv[1] % MOD;

}

scanf("%s", t);

int n = strlen(t);

int power = 1;

for (int i = 0; i < n; ++i) {

_hash[i + 1] = (_hash[i] + power * 1LL * (t[i] - 'a' + 1)) % MOD;

power = power * 1LL * B % MOD;

}

scanf("%s", p);

int m = strlen(p);

int pattern_hash = 0;

power = 1;

for (int i = 0; i < m; ++i) {

pattern_hash = (pattern_hash + power * 1LL * (p[i] - 'a' + 1)) % MOD;

power = power * 1LL * B % MOD;

}

for (int i = 0; i + m - 1 < n; ++i) {

if (range(i, i + m - 1) == pattern_hash) {

printf("Match found starting at position %d.\n", i);

}

}

return 0;

}

We conclude this section by noting that since the polynomial rolling hash function takes
in values in [0,m), for k strings the probability of no collision is around

m

m
× m− 1

m
× m− 2

m
× · · · × m− k + 1

m

which is basically 0 for k ≈ 106 and m ≈ 109. We can easily fix this by using two different
(b,m) pairs to compute two different hash values and use the pair of hash values for com-
parison. Then the probability of at least one collision becomes very low. Of course, we can
compute more hash values for better safety as well, in exchange of more computation time.

4 Hashing Rooted Trees

Given two trees, we call them isomorphic to each other if they are structurally the same
trees. Formally, they have the same number of vertices n and there exists a permutation p
of {1, 2, ..., n} such that there’s an edge (i, j) in the first tree if and only if there’s an edge
(pi, pj) in the second tree. Now our target is to test if two rooted trees are isomorphic.

5

Let’s see. What property remains same in two isomorphic rooted trees? Is it the number
of vertices on each level? Here’s a counterexample.

Same number of vertices on each level, yet these trees are not isomorphic to each other.
Maybe we need the degree sequence to be same? Turns out false as well.

These two trees have the same degree sequence of vertices, yet not isomorphic to each
other. The property we need is actually a recursive definition. Let’s denote the root by r
and its children by c1, c2, ..., ck. Let’s denote the hash value of the subtree rooted at u by
f(u). Then f(r) should merge the values of f (c1) , f (c2) , ..., f (ck) in an unordered fashion.

Before diving into the solution, we state a fact that we’ll use in the analysis.

6

Schwartz–Zippel Lemma. Consider a nonzero polynomial P on n variables of
degree d over a field F. For any finite S ⊆ F, the probability of a random point in
Sn being a root of P is at most d

|S| .

The proof is left to the reader as an exercise (hint: induct on the number of variables).
As a consequence, the probability of two different polynomials P, Q colliding on the same
point x modulo m is simply the probability of x being a root of P −Q modulo m, which is
max {degP, degQ}

m
.

Now let’s consider a simpler problem: given two lists of same size {a1, a2, ..., an} and
{b1, b2, ..., bn}, are these two the same list? Of course, there’s an O(n lg n) deterministic so-
lution that sorts both lists and checks if the values at each position match. But there’s
a linear time solution that uses hashing. We take a prime modulus m and a random
integer t ∈ [0,m). Then we simply compute the values (t + a1) (t + a2) · · · (t + an) and
(t + b1) (t + b2) · · · (t + bn), both modulo m and compare them. Since these are two different
polynomials of degree n evaluated at t, the probability of collision is n

m
, which is somewhat

small for n ≈ 105 and m ≈ 109 (can be improved by more hashes).

We can use the same idea of assigning polynomials in case of rooted trees as well.
Suppose the tree has depth h, then the hash function will be a polynomial on h variables
x1, ..., xh. Let’s assign the tree on a single vertex the hash value 1. So the leaves get mapped
to 1. Now we recursively define the hash value of the subtree rooted at u with children
c1, c2, ..., ck whose depth is hu by

f(u) = (xhu + f (c1)) (xhu + f (c2)) · · · (xhu + f (ck))

similar to the list problem. This definition combines the children hash values in an unordered
fashion, and we can guarantee the uniqueness of the polynomial for each tree up to isomor-
phism because every polynomial has a unique factorization. Furthermore, notice that this
polynomial has degree d on a tree with d leaves. Now we simply evaluate this polynomial at
a random point in {0, 1, ...,m− 1}h, so the probability of collision is d

m
by the above lemma:

pretty small (again, can be improved by more hashes).

Finally, here’s some C++ code testing if two rooted trees are isomorphic (assuming
both are rooted at 1).

#include <bits/stdc++.h>

using namespace std;

const int N = 100010;

const int MOD = 1e9 + 7;

int n, x[N], h[N];

vector <int> g[2][N];

7

int get (int id, int u = 1, int from = -1) {

vector <int> childs;

for (int v : g[id][u]) if (v - from) {

childs.emplace_back(get(id, v, u));

h[u] = max(h[u], 1 + h[v]);

}

if (childs.empty()) return 1;

int ret = 1;

for (int value : childs) ret = ret * 1LL * (x[h[u]] + value) % MOD;

return ret;

}

int main() {

for (int i = 0; i < N; ++i) {

x[i] = rand() * 1LL * rand() % MOD;

}

cin >> n;

for (int i = 1; i < n; ++i) {

int u, v;

scanf("%d %d", &u, &v);

g[0][u].emplace_back(v);

g[0][v].emplace_back(u);

}

for (int i = 1; i < n; ++i) {

int u, v;

scanf("%d %d", &u, &v);

g[1][u].emplace_back(v);

g[1][v].emplace_back(u);

}

int firstTree = get(0);

int secondTree = get(1);

puts(firstTree == secondTree ? "Isomorphic" : "Not Isomorphic");

return 0;

}

5 Big Hashes Can Be Useful!

It’s not always true that hashes should only be smaller than the original data. Sometimes
mapping to bigger data helps solve problems as well. Let’s go through an example.

• Given a list of m edges on a graph of n vertices. You’re given q queries each asking if
each connected component of the graph formed only by the edges with indices in range
[l, r] contains an Eulerian cycle. An Eulerian cycle is a path that starts and finishes
at the same vertex and visits each edge exactly once.

A necessary and sufficient condition for a connected graph having an Eulerian cycle is
each vertex having an even degree (try to prove this). Having this, our problem reduces

8

to checking if each vertex has an even degree in the graph formed by edges in range [l, r].
But the degree of a vertex is the number of times it appears on the edge list! So we have
a simpler problem to solve: given an array and queries giving a range [l, r], check if each
number in index range [l, r] has an even frequency.

This problem admits an interesting, although somewhat wrong, solution. Let’s compute
the prefix xor of the array values: we compute pi = a1⊕a2⊕· · ·⊕ai for each 1 ≤ i ≤ n with
p0 = 0. Then the xor of values in range [l, r] can be computed simply as pr⊕pl−1 (recall that
xor is associative and x⊕x = 0 for any x). Now if every element appears an even number of
times on range [l, r], what can we say about their xor? It’s zero! Because the values cancel
in pairs. So we only need to check if pr ⊕ pl−1 is zero and we’re done!

Well, not quite! While the xor of the elements being zero is a necessary condition, it’s
not a sufficient one. For example, the xor of the values {1, 2, 3} is 0, although each one
appears an odd number of times. The problem is, there are certain sets of values that just
happen to have an even number of bits on each position. This should be rare, but such a
sequence can definitely be there.

But notice that we only care about the frequency of each value, not the value itself. So
if we replace the same values by some other value, it doesn’t affect our problem. Let’s hash
each different number in the array to a very large unique random value. This way, although
the problem remains same, the probability of such ‘bad’ sequences occurring becomes really
really low (we need an even number of bits on 64 bit positions, an almost impossible require-
ment when the values are chosen at random). So our previous solution will work well.

This allows us to process the queries in the very efficient O(m+q) time and O(m) space.

6 Further Reads

• Birthday problem. https://en.wikipedia.org/wiki/Birthday_problem

• String hashing. https://cp-algorithms.com/string/string-hashing.html

• Why 2t is a bad modulus. https://codeforces.com/blog/entry/4898

• Designing strong hash functions. https://codeforces.com/blog/entry/60442

9

https://en.wikipedia.org/wiki/Birthday_problem
https://cp-algorithms.com/string/string-hashing.html
https://codeforces.com/blog/entry/4898
https://codeforces.com/blog/entry/60442

	Introduction
	Hash Functions
	String Hashing
	Hashing Rooted Trees
	Big Hashes Can Be Useful!
	Further Reads

