
Formal Power Series and Generating Functions

Jubayer Nirjhor

January 2019

Prerequisites

• High School Calculus

• Basic Dynamic Programming

• Fast Fourier Transform (only for the applications)

Introduction

“A generating function is a device somewhat similar to a bag. Instead of carrying many little objects

detachedly, which could be embarrassing, we put them all in a bag, and then we have only one object to carry, the

bag.” - Polya

Formal Power Series

Let’s get down to some basics first. A Formal Power Series is simply a series of form

A(x) = a0 + a1x+ a2x
2 + · · · =

∞∑
k=0

akx
k

where {a0, a1, a2, ...} is a sequence (finite or infinite). Loosely speaking, you can think of it as a polynomial
with infinitely many terms where we do not care about the convergence at different values of x, only the
coefficients. So you don’t get to ask what happens when you put in x = 0 or something: it does not mean
anything.

We can add, subtract, and multiply two formal power series A(x) =
∑

k≥0 akx
k and B(x) =

∑
k≥0 bkx

k

similarly as we do in case of polynomials

A(x) +B(x) =
∑
k≥0

(ak + bk)xk, A(x)−B(x) =
∑
k≥0

(ak − bk)xk, A(x)B(x) =
∑
k≥0

 ∑
i+j=k

aibj

xk.

Similar to real numbers, we define the inverse of a formal power series A(x) as a formal power series B(x)
such that A(x)B(x) = 1 and denote B(x) by A−1(x). Notice that if A(x) =

∑
k≥0 akx

k has a0 = 0, that

is, A(x) = a1x+ a2x
2 + · · · = x

(
a1 + a2x+ a3x

2 + · · ·
)
, then multiplying it by any formal power series will

produce a multiple of x. So A(x) does not have an inverse (similar to 0 in R). In fact, the converse turns
out to be true as well.

Theorem. A formal power series A(x) =
∑

k≥0 akx
k has an inverse if and only if a0 6= 0.

1



As an example, A(x) = x does not have an inverse: 1/x does not exist. But A(x) = 1− x does have an
inverse. We can quickly verify:

(1− x)
(
1 + x+ x2 + · · ·

)
=
(
1 + x+ x2 + · · ·

)
−
(
x+ x2 + x3 + · · ·

)
= 1

and so 1/(1 − x) = 1 + x + x2 + · · ·. It’s pretty easy to prove that the inverse, if exists, is unique (try it).
Equipped with this, we can now define division: A(x)/B(x) = A(x)B−1(x) whenever the inverse of B(x)
exists. We can define a few more operations similarly: like

√
A(x) = B(x) if and only if B(x)2 = A(x).

Differentiation and integration (called formal differentiation and formal integration) are also defined as is in
case of polynomials:

d

dx
A(x) =

∑
k≥1

kakx
k−1,

∫
A(x) dx =

∑
k≥0

ak
k + 1

xk+1.

One last definition: we define by A(x) mod xn the first n terms of A(x) where n ∈ N. For example:
A(x) mod x = a0 and A(x) mod x3 = a0 + a1x+ a2x

2.

Ordinary Generating Function

Given a sequence a = {a0, a1, a2, ...}, its ordinary generating function (OGF) A(x), for all we care about,
is the formal power series with coefficients ai (this is not the actual definition of generating functions, but
we can always reduce to this one). How does this representation help us? Let’s consider the classic problem
of finding the n-th Fibonacci number. Recall that the Fibonacci sequence is defined by f0 = 0, f1 = 1
and fn = fn−1 + fn−2 for all n ≥ 2. It’s OGF, then, is given by F (x) =

∑
k≥0 fkx

k. Using the recurrence
relation, let’s manipulate it a bit:

F (x) =
∑
k≥0

fkx
k = 0 + x+

∑
k≥2

fkx
k = x+

∑
k≥2

(fk−1 + fk−2)xk = x+
∑
k≥2

fk−1x
k +

∑
k≥2

fk−2x
k

= x+ x
∑
k≥2

fk−1x
k−1 + x2

∑
k≥2

fk−2x
k−2 = x+ x

∑
k≥1

fkx
k + x2

∑
k≥0

fkx
k = x+ xF (x) + x2F (x).

So we have F (x) = x+xF (x)+x2F (x). Make sure you understood each step (we’ve used the fact that f0 = 0
to obtain xF (x)). We can now easily solve for F (x) and obtain F (x) = x/

(
1− x− x2

)
. Out of nowhere

we’ve got ourselves an expression for the generating function of f that does not contain any fi. This little
expression ‘enumerates’ all the Fibonacci numbers in itself. From the previous section, we know that the
formal power series 1− x− x2 has an inverse. Let’s find it. We can factorize 1− x− x2 = (1− αx) (1− βx)
where α =

(
1 +
√

5
)
/2 and β =

(
1−
√

5
)
/2. Then:

F (x) =
x

1− x− x2
=

x

(1− αx) (1− βx)
=

1

α− β

(
1

1− αx
− 1

1− βx

)
=

1

α− β

∑
k≥0

αkxk −
∑
k≥0

βkxk


=⇒ F (x) =

∑
k≥0

αk − βk

α− β
xk =

∑
k≥0

fkx
k =⇒ fn =

αn − βn

α− β
=

(
1 +
√

5
)n − (1−√5

)n
2n
√

5
.

Notice that we’ve used (1 − z)−1 =
∑

k≥0 z
k from the previous section. We can apply this approach to

any linear recurrence of form an = can−1 + dan−2 and in fact, to any recursively defined sequence. As an
exercise, solve Timus 1605 finding a closed form expression first.

Another well-known generating function is given by the generalized Binomial Theorem:

(1 + x)r =
∑
k≥0

(
r

k

)
xk,

[(
r

k

)
=
r(r − 1) · · · (r − k + 1)

k!
, r ∈ R, k ∈ N

]
.

Let’s consider another classic problem: counting the number of binary trees on n nodes. Denoting this
number by tn (considering the empty tree to be valid), we can formulate the following recurrence relation:

2

http://acm.timus.ru/problem.aspx?space=1&num=1605


t0 = 1, tn =
∑

i+j=n−1
titj . Here we simply distribute all the nodes except the root: i nodes to the left

subtree and j childs to the right. Let’s try to find the generating function T (x):

T (x) =
∑
k≥0

tkx
k = 1 +

∑
k≥1

tkx
k = 1 +

∑
k≥1

 ∑
i+j=k−1

titj

xk

= 1 + x
∑
k≥1

 ∑
i+j=k−1

titj

xk−1 = 1 + x
∑
k≥0

 ∑
i+j=k

titj

xk = 1 + xT (x)2.

Don’t be surprised! We’ve applied the product formula of two formal power series from the previous section.
So we have T (x) = 1 + xT (x)2 =⇒ T (x) =

(
1±
√

1− 4x
)
/2x. Recall that 1/x does not exist as a formal

power series. So we simplify further:

T (x) =
1±
√

1− 4x

2x
=

(
1±
√

1− 4x
) (

1∓
√

1− 4x
)

2x
(
1∓
√

1− 4x
) =

1− (1− 4x)

2x
(
1∓
√

1− 4x
) =

2

1∓
√

1− 4x
.

A really good question right now would be: what sign do we take? This question takes us back to the very
basics. We do know that T (x) is a formal power series, so the right side must be a formal power series as well.
What condition must we impose on the right side expression to make that sure? We need the denominator
to be invertible! But

√
1− 4x starts with a 1, so 1 −

√
1− 4x would have the constant term 0 making it

not invertible (see previous section). So we must take the plus sign, and hence T (x) = 2
(
1 +
√

1− 4x
)−1

.
Expanding this expression as a formal power series is still a to-do: we can first invert it as (1 + z)−1 and
then expand

√
1− 4x using Binomial Theorem. But that’s too much work. We don’t want to do the dirty

work by hand, instead let the computer do it.

Algorithms for the Dirty Work

In most of the problems, we can figure out the generating function by hand, but expanding the function
as a single formal power series is tedious. The function often involves product, inverse, square root or
composition of several such operations on formal power series. In this section, we look at some efficient
algorithms to perform some of these operations. We focus on generating the first n terms of the resultant
series in reasonable time, when we’re given the first needed O(n) terms of the operand series.

• Addition and Scaling. To find A(x) + B(x), A(x) − B(x), cA(x): we can simply iterate over the
coefficients. Complexity: O(n).

• Formal Product. To find A(x)B(x): we can consider A(x) and B(x) as polynomials with the
first n coefficients and perform Fast Fourier Transform to get the first n terms of the product series.
Complexity: O(n lg n).

• Formal Derivative and Integral. To find
d

dx
A(x),

∫
A(x) dx: again, we can simply iterate and

update. Complexity: O(n).

• Inverse. We’ll find inverse of A(x). Let’s denote Bk(x) = A−1(x) mod xk. B1(x) is simply 1/a0. Now
given Bk(x) we can compute B2k(x) as follows:

ABk ≡ 1 =⇒ ABk − 1 ≡ 0 (mod xk)

=⇒ (ABk − 1)
2 ≡ 0 =⇒ A2B2

k − 2ABk + 1 ≡ 0 (mod x2k)

=⇒ 1 ≡ 2ABk −A2B2
k =⇒ B2k ≡ 2Bk −AB2

k = Bk (2−ABk) (mod x2k)

Notice that squaring doubles the number of terms in the series, which is why this works. Also notice
the last step where we multiply both sides by the inverse of A(x) to product a B2k(x) on the left.
Complexity: O(n lg n).

3



• Square Root. We’ll find the square root of A(x). Let’s denote Bk(x) =
√
A(x) mod xk. Again,

we can take B1(x) =
√
a0 (so a0 must be nonnegative). And given Bk(x) we can compute B2k(x) as

follows (notice where we use the identity (a− b)2 + 4ab = (a+ b)2):

B2
k ≡ A =⇒ B2

k −A ≡ 0 (mod xk)(
B2

k −A
)2 ≡ 0 =⇒

(
B2

k +A
)2 ≡ 4AB2

k =⇒
(
Bk +AB−1k

)2 ≡ 4A (mod x2k)

=⇒ Bk +AB−1k ≡ 2B2k =⇒ B2k ≡
Bk +AB−1k

2
(mod x2k)

Notice the last step where we take the square root of both sides to produce B2k on the right side.
Complexity: O(n lg n).

Newton-Raphson Method of Iteration

...

Exponential Generating Function

...

Problems and Solutions

...

4


